
Umwelt- und Planungsausschuss 10.12.2008

Umsetzung der EU-Umgebungslärm-Richtlinie

Lärmaktionsplanung in Ahrensburg "Vorstellung der Ergebnisse des Entwurfs"

Björn Heichen Michael Thomas

Inhalt

- 1. Einführung
- 2. Gesetzliche Grundlagen und Zeitplan
- 3. physikalische Grundlagen
- 4. Beurteilungspegel / Lärmindizes Unterschiede in der Berechnung
- 5. Lärmaktionsplanung
- 6. Vorgehensweise in Ahrensburg
- 7. Ergebnisse der Prognose
- 8. Maßnahmen (Planfälle)
- 9. Ruhige Gebiete
- 10. Ausblick

1. Einführung

"Richtlinie des Europäischen Parlaments und des Rates über die Bewertung und Bekämpfung von Umgebungslärm"

Ziel der Richtlinie:

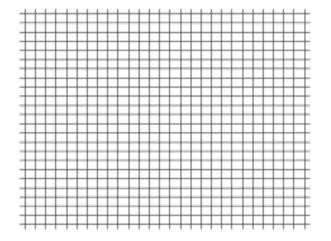
- Ein gemeinsames Konzept, um schädliche Auswirkungen durch Umgebungslärm zu verhindern bzw. zu mindern,
- Die EU-Richtlinie seit 18. Juli 2002 in Kraft
- Umsetzung in nationales Recht ist mit der Änderung des BImSchG am 29. Juni 2005 erfolgt.

2. Gesetzliche Grundlagen

- EU-Richtlinie 2002/49/EG vom 25. Juni 2002
- Bundesimmissionsschutzgesetz (BImSchG)
- Gesetz zur Umsetzung der EG-Richtlinie über die Bewertung und Bekämpfung von Umgebungslärm vom 29. Juni 2005
- Verordnung über die Lärmkartierung (34. BlmSchV) vom 06. März 2006;
- Vorläufige Berechnungsmethoden, VBUSCH (Schiene), VBUS (Straße), VBUI (Industrie), VBUF-DES und VBUF-AzB (Fluglärm), VBEB (Ermittlung der Belastetenzahlen)

2. Zeitplan - Lärmkarten / Lärmaktionspläne

Termin	Ballungsräume	Hauptverkehrsstraßen	Haupteisenbahnstrecken	Großflughäfen			
Lärmkarten							
30.06.2007 (Stufe I)	> 250.000 Einw.	> 6 Mio. Kfz/Jahr (> DTV ca. 16.400)	> 60.000 Züge/Jahr (> ca. 170 Zügen/24h)	- > 50.000 Bew./Jahr (> ca. 140 Bew./24h)			
30.06.2012 (Stufe II) und dann alle 5 Jahre mind. Überprüfung	> 100.000 Einw.	> 3 Mio. Kfz/Jahr (> DTV ca. 8.200)	> 30.000 Züge/Jahr (> ca. 85 Zügen/24h)				
Lärmaktionspläne							
18.07.2008	> 250.000 Einw.	> 6 Mio. Kfz/Jahr (> DTV ca. 16.400)	> 60.000 Züge/Jahr (> ca. 170 Zügen/24h)	> 50.000 Bew./Jahr (> ca. 140 Bew./24h)			
18.07.2013 und dann alle 5 Jahre mind. Überprüfung	> 100.000 Einw.	> 3 Mio. Kfz/Jahr (> DTV ca. 8.200)	> 30.000 Züge/Jahr (> ca. 85 Zügen/24h)				


3. Physikalische Grundlagen - Was ist Schall?

- Schall ist die wellenförmige Änderung des Luftdrucks; (Ein Schallemittent ändert lokal den Luftdruck)
- Lautstärke: Amplitude der Luftdruckänderung;
 (hohe Amplitude = große Änderung des Luftdrucks = laut)
- Frequenz: Tonhöhe des Schalls.
 (440 Hz = 440 Schwingungen pro Sekunde = Kammerton A)

Quellen: Wikipedia, laerm.schleswig-holstein.de

3. Physikalische Grundlagen - Was ist ein dB(A)?

Das menschliche Ohr nimmt eine sehr große Bandbreite unterschiedlicher Lautstärken und Frequenzen wahr.

- Eine logarithmische Einheit gibt das menschliche H\u00f6rempfinden besser wieder als die lineare Einheit Pascal
- Logarithmische Einheit: dezi-Bel (dB)
- Bewertung nach menschlichem Frequenzempfinden (A-Bewertung)
 (das menschliche Ohr ist bei mittleren Frequenzen am empfindlichsten, diese
 werden in der A-Bewertung hervorgehoben)

3. Physikalische Grundlagen – Was ist wie laut?

Situation bzw. Schallquelle	Entfernung von Schallquelle bzw. Messort	Schalldruck <i>p</i> in Pascal	Schalldruckpegel L _p in dB re 20 µPa
Düsenflugzeug	30 m	630 Pa	150 dB (A)
Schmerzschwelle	am Ohr	100 Pa	134 dB (A)
Presslufthammer / Diskothek	1 m / am Ohr	2 Pa	100 dB (A)
Fernseher auf Zimmerlautstärke	1 m	0,02 Pa	ca. 60 dB (A)
Sprechender Mensch (normale Unterhaltung)	1 m	2 10 ⁻³ - 6,3 10 ⁻³ Pa	40 - 60 dB (A)
Sehr ruhiges Zimmer	am Ohr	2 10 ⁻⁴ - 6,3 10 ⁻⁴ Pa	20 - 30 dB (A)
Blätterrauschen, ruhiges Atmen	am Ohr	6,32 10⁻⁵ Pa	10 dB (A)
Hörschwelle bei 2 kHz	am Ohr	2 10 ⁻⁵ Pa (20 μPa)	0 dB (A)

Quelle: Wikipedia

3. Physikalische Grundlagen – Wahrnehmbare Änderungen

Pegeländerungen unterhalb von 1 dB(A) sind weder messtechnisch noch physisch wahrnehmbar;

(entspricht ca. 25% mehr Kfz-Verkehr auf einer Straße)

Eine Erhöhung des Schalldruckpegels von 3 dB(A) entspricht einer energetischen Emissionsverdopplung; (entspricht 100% mehr Kfz-Verkehr auf einer Straße)

Änderungen zwischen 6 und 10 dB(A) werden vom Menschen als Verdopplung der Lautstärke wahrgenommen.

4. Beurteilungspegel / Lärmindizes

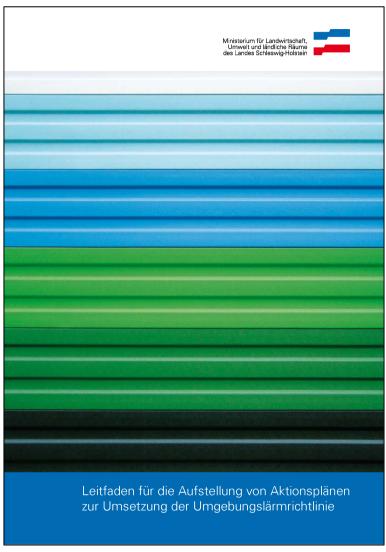
Der Lärmindex L_{den} der Umgebungslärmrichtlinie ist nicht mit den bekannten Beurteilungspegeln vergleichbar!

L_{den}: Tag-Abend-Nacht-Pegel ist ein über 24 Stunden gemittelter, für die Teilzeiten Abend und Nacht höher gewichteter Lärmindex

Beurteilungszeitraum ist ein Jahr.

$$L_{den} = 10 \cdot \lg \frac{1}{24} \left(12 \cdot 10^{\frac{L_{day}}{10}} + 4 \cdot 10^{\frac{L_{evening} + 5}{10}} + 8 \cdot 10^{\frac{L_{night} + 10}{10}} \right)$$

4. Unterschiede in der Berechnung



- Es ist grundsätzlich ein digitales Höhenmodell zu verwenden (DGM).
- Rasterlärmkarten werden in fester Höhe von 4 m gerechnet, die Immissionsorte werden an den Hausfassaden ebenfalls auf einer Höhe von 4 m festgelegt.
- Andere Ausbreitungsbedingungen als in den derzeitigen Berechnungsvorschriften für die städtebauliche Planung (Windrose etc.).
- Vorläufige Berechnungsmethoden beinhalten keine Zuschläge (kein Ampelzuschlag, Zuschläge für Impuls- Tonhaltigkeit, Schienenbonus etc.).

5. Lärmaktionsplanung

- Gesundheitsschutz und Vorsorge
- Steigerung der Wohnqualität
- Steigerung der Aufenthaltsqualität im Freien (Naherholung und Tourismus)
- Darstellung und Erhalt ruhiger Gebiete

5. Lärmaktionsplanung

- Beteiligung der Bürger
- Langfristiger Prozess
- Unterschiedliche Quellen werden separat behandelt
- keine Grenz- bzw. Richtwerte
- Individueller Aktionsplan für jede Gemeinde / Stadt
- Ambitionierte, langfristige Strategien können dargestellt werde
- keine Ansprüche aus der Lärmaktionsplanung
- Zielkonflikt Belastete / Lärmemittent
- Sicherstellung der Mobilität

5. Lärmaktionsplanung

Reduzierung der belasteten Bürger

dB(A)		Belastete Me VBEB – Straßenlärm	nschen nach (Kartierung 07)
über	bis	L _{DEN}	L_{Night}
50	55	-	2.500
55	60	4.400	1.000
60	65	2.100	100
65	70	800	0
70	75	10	0
75		0	0
Summe		7.310	3.600