

Energieversorgungskonzept für die Neugestaltung der Wärmeversorgung "Quartier Reeshoop" in Ahrensburg

IPP ESN Power Engineering

Dipl.-Ing. Volkmar Kämpf

Telefon: 0431 - 64 95 98 14

0170 - 225 40 41

v.kaempf@ipp-esn.de

IPP ESN Power Engineering

Dipl.-Ing. Thomas Lutz

Telefon: 0431 - 64 95 98 15

t.lutz@ipp-esn.de

Ziel dieses Energieversorgungskonzeptes ist es, eine Energieversorgung nach folgenden Gesichtspunkten zu schaffen:

- Nachhaltigkeit
- Umweltentlastung
- Versorgungssicherheit
- Günstige Energiekosten
- niedrige Primärenergiefaktoren

Warum niedrige Primärenergiefaktoren?

- KfW Programm "Energieeffizient Bauen"
- KfW Programm "Energieeffizient Sanieren"

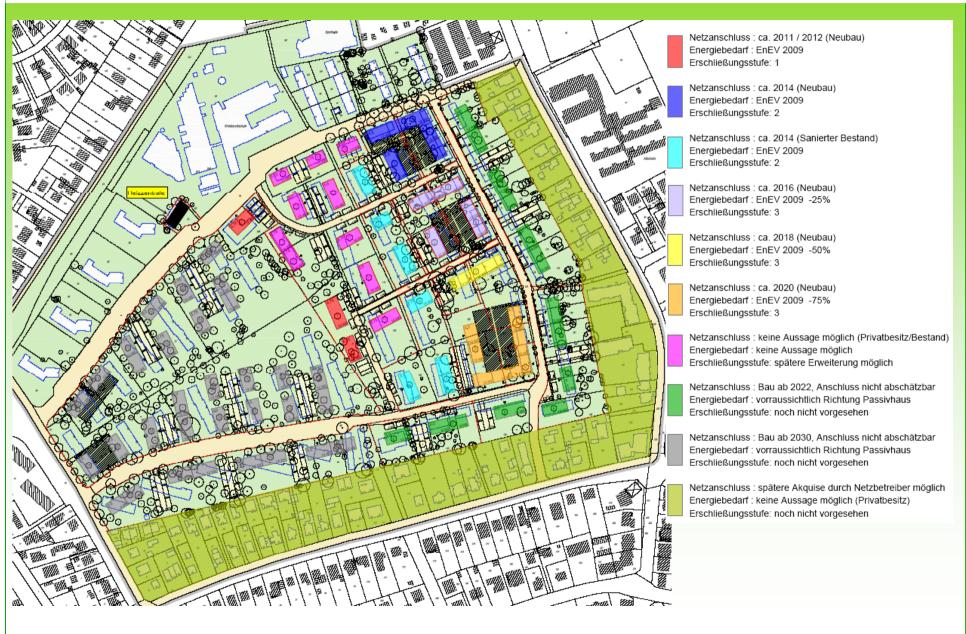
Energieträg	Primärenergiefaktoren	
Brennstoffe	Heizől EL	1,1
	Erdgas H	1,1
	Flüssiggas	1,1
	Steinkohle	1,1
	Braunkohle	1,2
	Holz	0,2
Nah-/Fernwärme aus KWK	fossiler Brennstoff	0,7
	erneuerbarer Brennstoff	0,0
Nah-/Fernwärme aus Heizwerken	fossiler Brennstoff	1,3
	erneuerbarer Brennstoff	0,1
Strom	Strom-Mix	2,6

Folgende dezentrale Versorgungsvarianten werden untersucht:

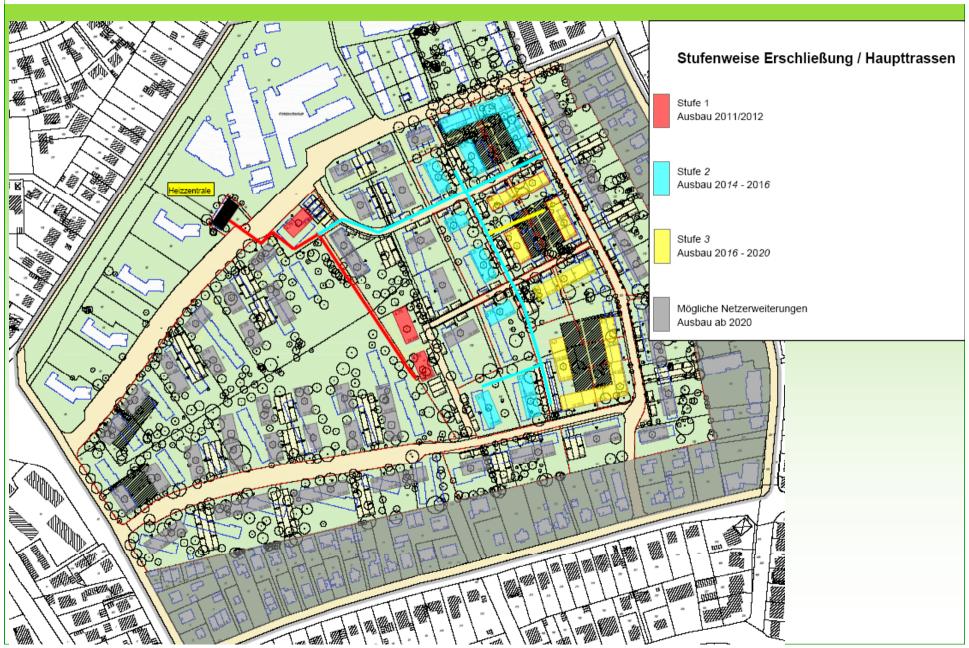
- Brennwerttechnik mit Solarthermieunterstützung (Heizung und Brauchwassererwärmung),
- Holzpelletfeuerung,
- Wärmepumpe

Folgende zentrale Versorgungsvarianten werden untersucht:

- Erdgas-BHKW + Spitzenlastgaskessel
- Bioerdgas-BHKW + Spitzenlastgaskessel
- Holzpelletfeuerung + Spitzenlastgaskessel
- Holzhackschnitzelfeuerung + Spitzenlastgaskessel
- Erdwärme + Spitzenlastkessel

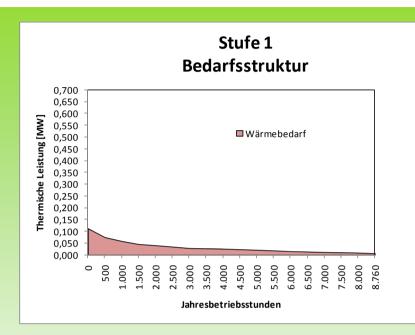

Alle betrachteten Versorgungsvarianten halten die Forderungen des **EEWärmeG**, dass ein bestimmter Anteil regenerativer Energien bei Neubauten zum Einsatz kommen muss, ein.

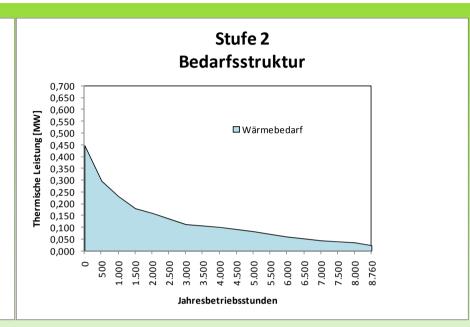
Grundlagen zur Bedarfsermittlung:

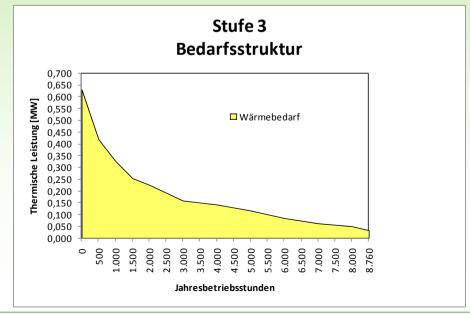

- Bestimmung des Wärmebedarfes auf Basis der EnEV 2009 für alle Neubauten bis zum Jahr 2014
- Ab dem Jahr 2016 wird mit einem stetig abnehmenden Wärmebedarf gerechnet.
- Alle Neubauten, die nach 2020 gebaut/saniert werden, wurden in diese Betrachtung nicht einbezogen, da eine realistische Abschätzung der Entwicklung nicht erfolgen kann.
- Der Ausbau bis zum Jahr 2020 ist im folgenden Konzept in **drei Erschließungsstufen** aufgeteilt. Ein Teil der Gebäude, sind sanierte Bestandsgebäude. Auch für diese wurde der Wärmebedarf der aktuellen EnEV angesetzt.

Standort Heizzentrale und mögliche Trassenführung

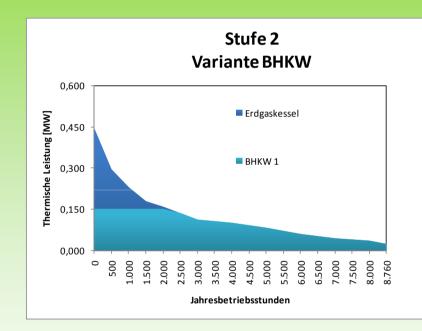
Ermittlung der Wärmebedarfe

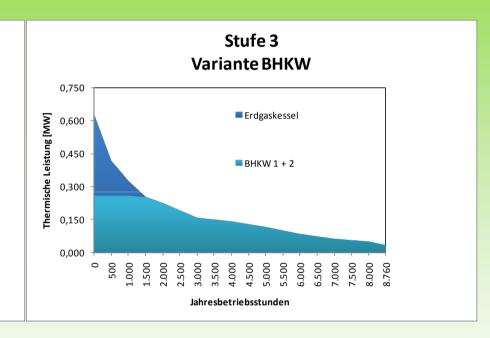

						beheizte Nutzfläche	
Ausbaustufe	Baujahr	WE	Gesamt WE	BGF	Gesamt BGF	(Faktor 0.85)	Nutzfläche / WE
1	2012	60	60	5.086 m ²	5.086 m ²	4.323 m ²	72 m²
2	2014	86	146	7.600 m ²	12.686 m ²	6.460 m ²	75 m²
2	2028	89	235	7.546 m ²	20.232 m ²	6.414 m ²	72 m²
3	2016	87	322	7.378 m ²	27.610 m ²	6.271 m ²	72 m²
3	2018	39	361	3.354 m ²	30.964 m ²	2.851 m ²	73 m²
3	2020	96	457	9.141 m ²	40.105 m ²	7.770 m ²	81 m²


	Faktor "Prozent						
	von				Brauchwasser	Heizwärmebedarf	Gesamt
Ausbaustufe	EnEV 2009"	Wärmebedarf / m²	Leistung	JVBS	Wärmebedarf	/ Jahr	Nutzwärmebedarf
1	100%	52,5 kWh / (m²a)	103 kW	2.200 Std.	54 MWh	173 MWh	227 MWh
2	100%	52,5 kWh / (m²a)	154 kW	2.200 Std.	81 MWh	258 MWh	566 MWh
2	100%	52,5 kWh / (m²a)	153 kW	2.200 Std.	80 MWh	257 MWh	903 MWh
3	75%	39,4 kWh / (m²a)	112 kW	2.200 Std.	59 MWh	188 MWh	1.150 MWh
3	50%	26,3 kWh / (m²a)	34 kW	2.200 Std.	18 MWh	57 MWh	1.225 MWh
3	25%	13,1 kWh / (m²a)	46 kW	2.200 Std.	24 MWh	78 MWh	1.327 MWh

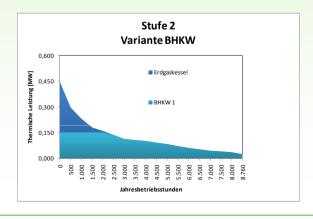

		Haus-		Gesamt		Netzleistungs-
Ausbaustufe	FW-Netz	anschlüsse	Netzverluste	Netzwärmebedarf	Netz JVBS	bedarf
1	200 m	3	59 MWh	286 MWh	2500	114 kW
2	230 m	2	121 MWh	687 MWh	2500	275 kW
2	290 m	6	212 MWh	1.115 MWh	2500	446 kW
3	50 m	3	235 MWh	1.385 MWh	2500	554 kW
3	0 m	1	239 MWh	1.463 MWh	2500	585 kW
3	0 m	2	246 MWh	1.573 MWh	2500	629 kW

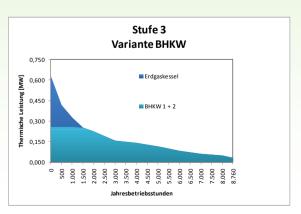
Struktur der Wärmebedarfe



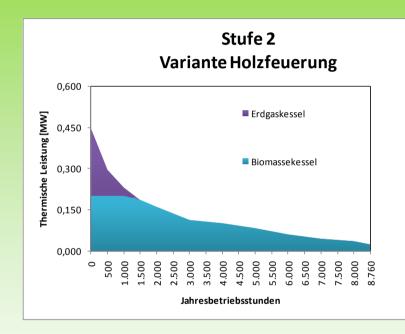


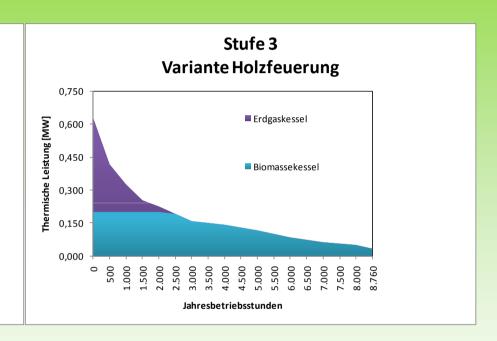
Auslegung BHKW



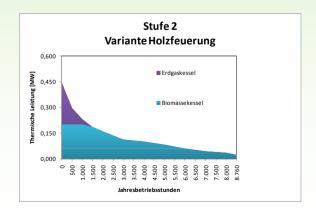


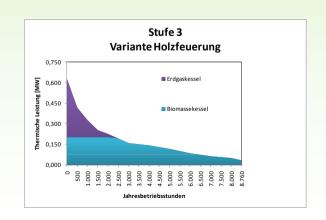
Auslegung BHKW


		Variante 1 BHKW			
Bilanzen		Stufe 1	Stufe 2	Stufe 3	Einheit
Netzwärmebedarf ca.	ca.	286	1.115	1.573	MWh _{Netz} / Jahr
Netzleistungsbedarf ca.	ca.	114	446	629	kW
Nutzwärmebedarf ca.	ca.	227	903	1.327	MWh _{Netz} / Jahr
JVBS	ca.	2.500	2.500	2.500	Stunden / Jahr
BHKW					
Тур			2G-KWK-100EG	1x 2G-KWK-100EG 1x 2G-KWK-70EG	
Elektrische Leistung	ca.		100	170	kW _{el}
Thermische Leistung	ca.		151	260	kW _{th}
Gesamtwirkungsgrad	ca.		87%	87%	
Brennstoffleistung	ca.		290	494	kW _{hu}
JVBS gesamt	ca.		5.416	4.762	Std.
Gesamte erzeugte elektrische Arbeit			542	810	MWh _{el} /a
Eigenbedarf Strom	3%		16	24	MWh _{el} /a
Gesamte nutzbare elektrische Arbeit	ca.		526	786	MWh _{el} /a
Gesamte erzeugte thermische Arbeit	ca.		818	1.238	MWh _{th} /a
Brennstoffbedarf	ca.		1.571	2.352	MWh _{Hu} /a
Kesselanlage					
Benötigte Kesselleistung	ca.	114	446	629	kW
Zusätzlich erforderliche thermische Arbeit	ca.	286	297	335	MWh/a
Eta Kesselanlage ca.	90%				
Zusätzlich erforderliche Brennstoffarbeit	ca.	320	330	370	MWh _{Hu} /a
Primärenergiefaktor		1,55	0,70	0,61	

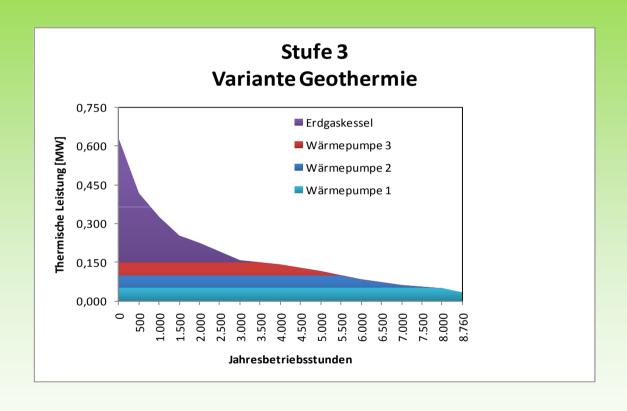


Auslegung Holzfeuerung

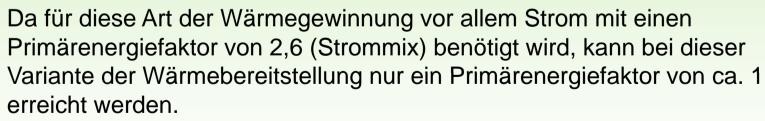




Auslegung Holzfeuerung


		Variante 2 Holzfeuerung				
Bilanzen		Stufe 1	Stufe 2	Stufe 3	Einheit	
Netzwärmebedarf ca.	ca.	286	1.115	1.573	MWh _{Netz} / Jahr	
Netzleistungsbedarf ca.	ca.	114	446	629	kW	
Nutzwärmebedarf ca.	ca.	227	903	1.327	MWh _{Netz} / Jahr	
JVBS	ca.	2.500	2.500	2.500	Stunden / Jahr	
Holzkessel						
Тур						
Thermische Leistung	ca.		200	200	kW _{th}	
Gesamtwirkungsgrad	ca.		90%	90%		
Brennstoffleistung	ca.		227	227	kW _{hu}	
JVBS gesamt	ca.		4.497	5.690	Std.	
Gesamte erzeugte thermische Arbeit	ca.		899	1.138	MWh _{th} /a	
Pelletbedarf	ca.		1.022	1.293	MWh _{Hu} /a	
Voccoloniago						
Kesselanlage						
Benötigte Kesselleistung	ca.	114	446	629	kW	
Zusätzlich erforderliche thermische Arbeit	ca.	286	216	435	MWh/a	
Eta Kesselanlage ca.	90%					
Zusätzlich erforderliche Brennstoffarbeit	ca.	320	240	480	MWh _{Hu} /a	
Primärenergiefaktor		1,55	0,52	0,59		

Auslegung Geothermie



Auslegung Geothermie

		Va	riante Geother	mie	
Bilanzen		Stufe 1	Stufe 2	Stufe 3	Einheit
Netzwärmebedarf ca.	ca.	286	1.115	1.573	MWh _{Netz} / Jahr
Netzleistungsbedarf ca.	ca.	114	446	629	kW
Nutzwärmebedarf ca.	ca.	227	903	1.327	MWh _{Netz} / Jahr
JVBS	ca.	2.500	2.500	2.500	Stunden / Jahr
Wärmepumpe					
Тур		1x SI100T	2x SI100T	3x SI100T	
Thermische Leistung	ca.	50	100	150	kW_{th}
Arbeitszahl	ca.	4,3	4,3	4,3	
JVBS gesamt	ca.	4.568	6.747	6.568	Std.
Gesamte erzeugte thermische Arbeit	ca.	228	675	985	MWh _{th} /a
Strombedarf	ca.	53	157	229	MWh _{Hu} /a
Kesselanlage					
Benötigte Kesselleistung	ca.	114	446	629	kW
Zusätzlich erforderliche thermische Arbeit	ca.	57	441	587	MWh/a
Eta Kesselanlage ca.	90%				
Zusätzlich erforderliche Brennstoffarbeit	ca.	60	490	650	MWh _{Hu} /a
Gesamtanlage					
Primärenergiefaktor		0,92	1,07	1,01	

In den weiteren Untersuchungen wird diese Variante nicht vertiefend betrachtet.

Investitionen

	Variante BHKW			
Investitionen	Stufe 1	Stufe 2	Stufe 3	
Unvorhergesehenes 10%				
Planung, Gutachten etc. 10%				
Gesamte Investitionen BHKW ca.		193.600€	363.000 €	
Gesamte Investitionen Kessel ca.		323.675 €	347.875 €	
Gesamte Investitionen Trasse ca.	109.929€	397.425 €	469.057 €	
Gesamte Investitionen ca.	109.929€	914.700€	1.179.932 €	

Investitionen

		Variante BHKW			
Investitionen		Stufe 1	Stufe 2	Stufe 3	
Unvorhergesehenes	10%				
Planung, Gutachten etc.	10%				
Gesamte Investitionen BHKW	ca.		193.600€	363.000 €	
Gesamte Investitionen Kessel	ca.		323.675€	347.875 €	
Gesamte Investitionen Trasse	ca.	109.929€	397.425 €	469.057 €	
Gesamte Investitionen	ca.	109.929€	914.700 €	1.179.932 €	

		Variante Pellets			
Investitionen		Stufe 1	Stufe 2	Stufe 3	
Unvorhergesehenes	10%				
Planung, Gutachten etc.	10%				
Gesamte Investitionen Pelletkessel	ca.		128.755 €	128.755 €	
Gesamte Investitionen Kessel	ca.		295.845 €	295.845 €	
Gesamte Investitionen Trasse	ca.	109.929 €	397.425 €	469.057 €	
Gesamte Investitionen	ca.	109.929€	822.025 €	893.657 €	

		Variante Hackschnitzel			
Investitionen		Stufe 1	Stufe 2	Stufe 3	
Unvorhergesehenes	10%				
Planung, Gutachten etc.	10%				
Gesamte Investitionen Hackschnitzelkessel	ca.		248.292€	248.292€	
Gesamte Investitionen Kessel	ca.		332.145 €	332.145 €	
Gesamte Investitionen Trasse	ca.	109.929€	397.425€	469.057 €	
Gesamte Investitionen	ca.	109.929€	977.862 €	1.049.494 €	

Energiewirtschaftliche Ansätze

Kapitalgebundene Kosten						
Zinssatz		5%	/Jahr			
Kapitaldienstfaktoren (Annuitätische Betrachtung):	Betrachtungszeitraum:					
BHKW/Wärmepumpe	15	9,63%	/ Jahr			
Pellet- / Hackschnitzelanlagen	20	8,02%	/ Jahr			
Gas-Kessel, Speicher, Peripherie, Heizflächen	20	8,02%	/ Jahr			
Fernwärmeleitungen	30	6,51%	/ Jahr			

Energie- und	Hilfsstoffkosten
---------------------	------------------

Brennstoffpreise:

Erdgas (Durchschnittskosten)

Arbeitspreis inkl. aller Nebenkosten

bei 1,10 Ho/Hu

<u>Bioerdgas</u> Arbeitspreis inkl. aller Nebenkosten

bei 1,10 Ho/Hu

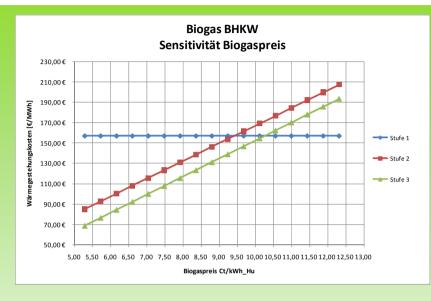
<u>Pelletkosten</u>

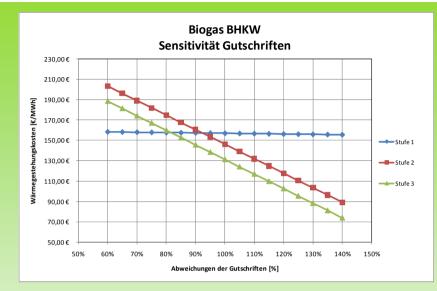
Hackschnitzelkosten

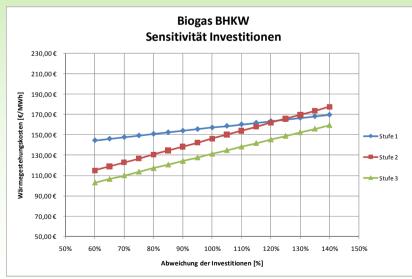
Stromkosten für Betrieb

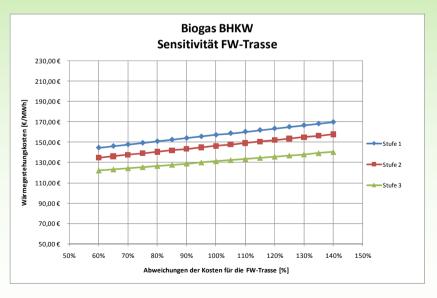
5,00	Ct/kWh Ho	
5,50	Ct/kWh Hu	
8,00	Ct/kWh Ho	
8,80	Ct/kWh Hu	
5	kWh / kg	
241	€/Tonne	
4,82	cent / kWh	
1,53	Sm³	
0,31	Sm³ / MWh	
3,388	kWh / kg	
86	€/Tonne	
2,54	cent / kWh	
4,00	Sm³	
1,18	Sm³/MWh	
16,50	Ct/kWh el	
	·	

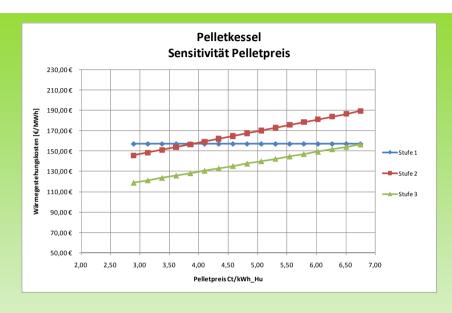
Zusammenfassung Wärmegestehungskosten

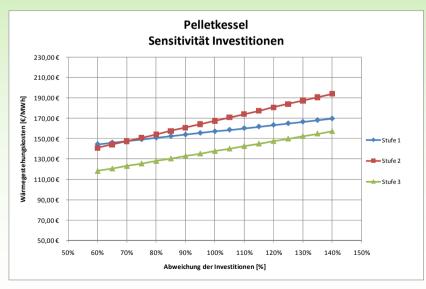

Wärmegestehungskosten und Primärenergiefaktoren f _P	Stufe 1	Stufe 2	Stufe 3	
BHKW Erdgas	156,97	186,80	171,03	€/MWh
	0,69	0,82	0,55	€ / (m² + Monat)
f _P	1,55	0,70	0,61	
BHKW Biogas	156,97	146,22	131,14	€/MWh
	0,69	0,64	0,43	€ / (m² + Monat)
f₽	1,55	0,70	0,61	
Holzfeuerung Pellet	156,97	167,44	137,64	€/MWh
	0,46	0,73	0,45	€ / (m² + Monat)
f _P	1,55	0,52	0,59	
Holzfeuerung Hackschnitzel	156,97	179,43	141,14	€/MWh
	0,46	0,79	0,46	€ / (m² + Monat)
f _P	1,55	0,52	0,59	
Geothermie f _P	0,92	1,07	1,01	_

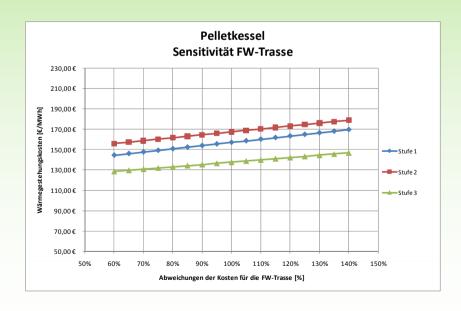

Wie aus der Zusammenstellung zu entnehmen ist, sind in der Ausbaustufe 3, mit den Varianten Bioerdgas-BHKW und Holzfeuerung, marktfähige Wärmegestehungskosten zu erwarten.


Die Variante "BHKW-Anlagen mit Erdgas" wird somit im Folgenden (wie die "Geothermienutzung") **nicht weiter betrachtet.**

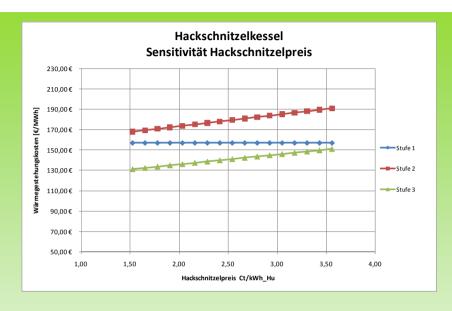

Sensitivitätsanalyse Bioerdgas BHKW

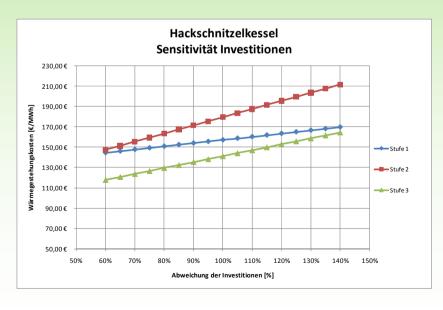


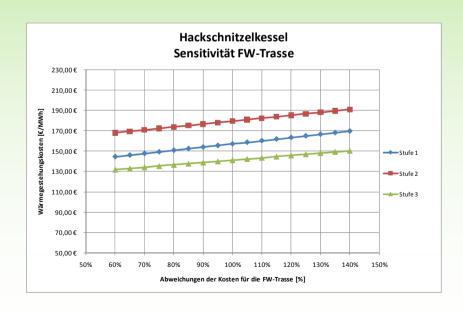




Sensitivitätsanalyse Holzpelletkessel



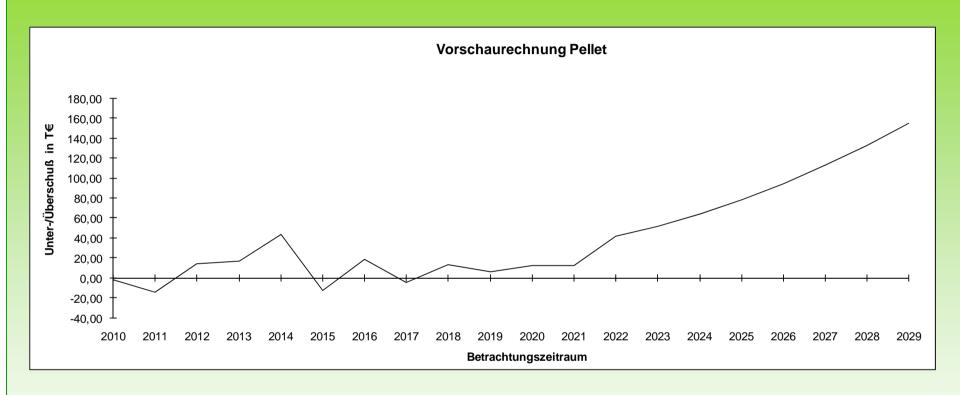




Sensitivitätsanalyse Hackschnitzelkessel

Anlegbare Kosten

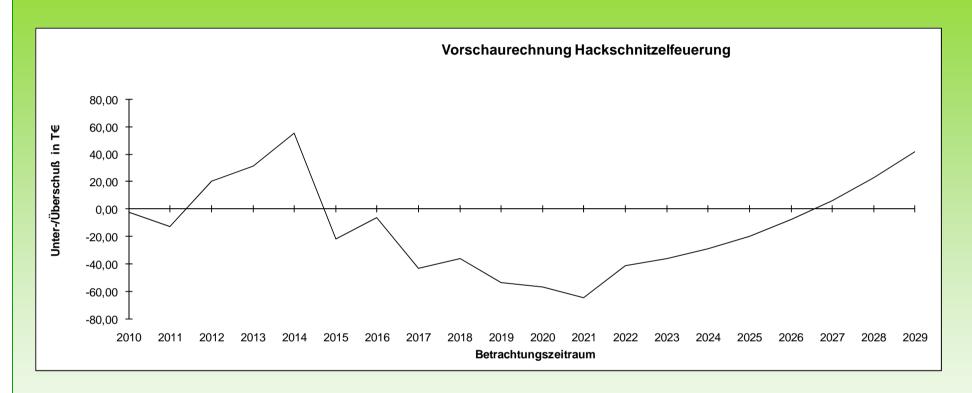
Anlegbare kosten				
	EnEV 2009	Anlegbare kosten	€/ (m² + Monat)	Primärenergiebedarf
Solarnutzung (Referenz)	100%	130,0 € / MWh	0,57€	70.591,0 kWh / a
	50%	195,9 € / MWh	0,43€	35.299,4 kWh / a
Gaskessel	100%	121,8 € / MWh	0,53€	96.257,7 kWh / a
	50%	170,8 € / MWh	0,37€	48.132,7 kWh / a
Pelletkessel	100%	120,3 € / MWh	0,53€	17.507,7 kWh / a
	50%	188,8 € / MWh	0,41€	8.757,7 kWh / a
Geothermienutzung	100%	155,2 € / MWh	0,68€	54.941,9 kWh / a
	50%	271,7 € / MWh	0,59€	27.470,9 kWh / a


Als **günstige Variante** stellt sich der Einsatz von **Holzpellets**, mit Wärmegestehungskosten von unter ca. 120 € pro MWh Nutzwärme, dar.

Dabei ist aber zu beachten, dass der Platzbedarf in der Heizzentrale (Keller) deutlich größer ist als bei den anderen untersuchten Varianten.

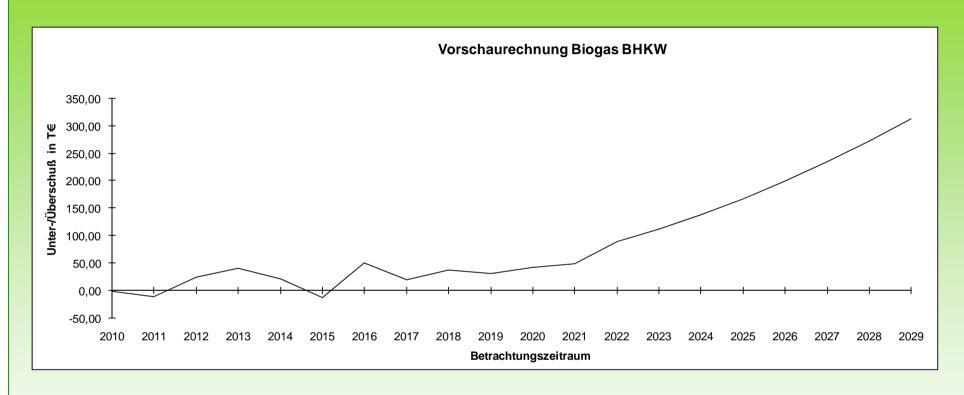
Bei einer mittelgroßen Auslegung des Pelletlagers muss bis zu 6 mal im Jahr eine Holzpelletlieferung erfolgen.

Vorschaurechnung Pellet



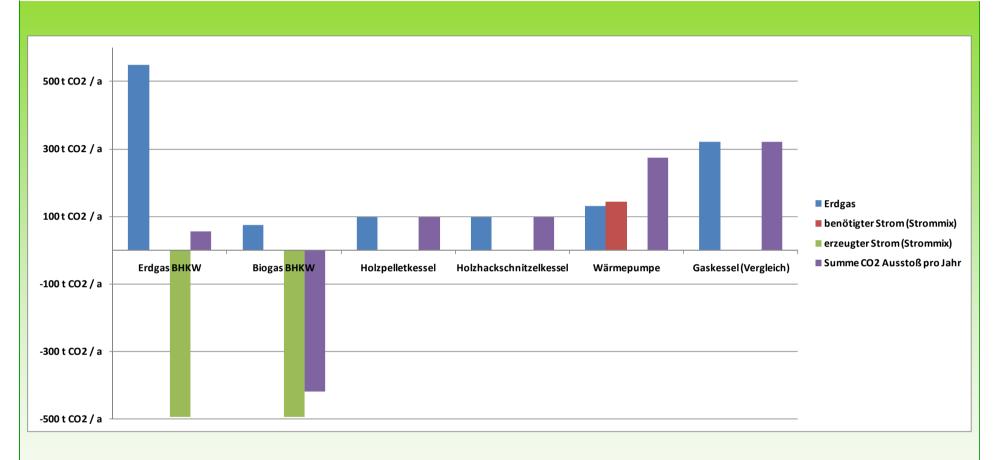
Für die Berechnungen wurde ein Wärmeverkaufspreis von 145 €/ MWh (ca. 0,50 € je m² und Monat) für den Mieter sowie einmalige Anschlusskosten von 10.000 € je Gebäude vom Investor angesetzt.

Vorschaurechnung Hackschnitzel



Für die Berechnungen wurde ein Wärmeverkaufspreis von 145 €/ MWh (ca. 0,50 € je m² und Monat) für den Mieter sowie einmalige Anschlusskosten von 10.000 € je Gebäude vom Investor angesetzt.

Vorschaurechnung Biogas-BHKW



Für die Berechnungen wurde ein Wärmeverkaufspreis von 145 €/ MWh (ca. 0,50 € je m² und Monat) für den Mieter sowie einmalige Anschlusskosten von 10.000 € je Gebäude vom Investor angesetzt.

CO2-Bilanzen

Die Werte bei den BHKW-Varianten stellen sich besonders günstig dar, da die vermiedenen CO₂ Emissionen der Stromerzeugung im Kraftwerk (Strommix) als "Gutschrift" betrachtet werden.

Zusammenfassung

Die durchgeführten Betrachtungen zeigen, dass eine zentrale Erschließung aller Verbraucher (bis 2020) mit Wärme, unter wirtschaftlichen Gesichtspunkten darstellbar ist. Der Vorteil der zentralen Erschließung ist darin zu sehen, dass alle Forderungen wie

- -Einhaltung der EnEV, EEWärmeG
- -geringe CO₂ Belastung
- -Wirtschaftlichkeit

erfüllt werden können.

Mit der Errichtung einer zentralen Versorgung ist der wirtschaftliche Einsatz umweltschonender Wärmeerzeugungstechniken und die Nutzung regenerativer Energien und nachwachsenden Rohstoffe möglich.

Weitere Vorgehensweise

Die zu realisierenden Schritte sind:

- -Entscheidung zentrale Versorgung ja/nein. Wenn ja, dann
- -Festlegung eines Standortes für eine Heizzentrale,
- -Prüfung ob eine Anschluss- und Benutzungszwang ausgesprochen werden kann/soll,
- -Erstellung einer Contractinganfrage,
- -Auswahl eines geeigneten Partners für die erforderlichen Dienstleistungen,
- -vertragliche Vereinbarungen (Wärmelieferverträge) vereinbaren/abstimmen,
- -sukzessive Erschließung/Umsetzung der Maßnahmen.

Zusammenfassend wird empfohlen die Realisierung einer zentralen Wärmeversorgung mit dem Brennstoff Holzpellet weiter zu verfolgen.

Vielen Dank für Ihre Aufmerksamkeit.